English
Karnataka Board PUCPUC Science Class 11

A Plate of Thickness T Made of a Material of Refractive Index µ is Placed in Front of One of the Slits in a Double Slit Experiment. - Physics

Advertisements
Advertisements

Question

A plate of thickness t made of a material of refractive index µ is placed in front of one of the slits in a double slit experiment. (a) Find the change in the optical path due to introduction of the plate. (b) What should be the minimum thickness t which will make the intensity at the centre of the fringe pattern zero? Wavelength of the light used is \[\lambda.\] Neglect any absorption of light in the plate.

Sum

Solution

Given:-

Refractive index of the plate is μ.

The thickness of the plate is t.

Wavelength of the light is λ.

(a)

When the plate is placed in front of the slit, then the optical path difference is given by \[\left( \mu - 1 \right)t\]

(b) For zero intensity at the centre of the fringe pattern, there should be distractive interference at the centre.

So, the optical path difference should be = \[\frac{\lambda}{2}\]

\[i . e .   \left( \mu - 1 \right)  t = \frac{\lambda}{2}\]

\[ \Rightarrow t = \frac{\lambda}{2  \left( \mu - 1 \right)}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Light Waves - Exercise [Page 381]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 17 Light Waves
Exercise | Q 13 | Page 381

RELATED QUESTIONS

The ratio of the intensities at minima to the maxima in the Young's double slit experiment is 9 : 25. Find the ratio of the widths of the two slits.


In a double-slit experiment the angular width of a fringe is found to be 0.2° on a screen placed 1 m away. The wavelength of light used is 600 nm. What will be the angular width of the fringe if the entire experimental apparatus is immersed in water? Take refractive index of water to be 4/3.


In Young’s experiment, the ratio of intensity at the maxima and minima in an interference
pattern is 36 : 9. What will be the ratio of the intensities of two interfering waves?


Explain two features to distinguish between the interference pattern in Young's double slit experiment with the diffraction pattern obtained due to a single slit.


In Young’s double slit experiment to produce interference pattern, obtain the conditions for constructive and destructive interference. Hence deduce the expression for the fringe width.


If the separation between the slits in a Young's double slit experiment is increased, what happens to the fringe-width? If the separation is increased too much, will the fringe pattern remain detectable?


A thin transparent sheet is placed in front of a Young's double slit. The fringe-width will _____________ .


A Young's double slit apparatus has slits separated by 0⋅28 mm and a screen 48 cm away from the slits. The whole apparatus is immersed in water and the slits are illuminated by red light \[\left( \lambda = 700\text{ nm in vacuum} \right).\] Find the fringe-width of the pattern formed on the screen.


Consider the arrangement shown in the figure. The distance D is large compared to the separation d between the slits. 

  1. Find the minimum value of d so that there is a dark fringe at O.
  2. Suppose d has this value. Find the distance x at which the next bright fringe is formed. 
  3. Find the fringe-width.

In Young’s double-slit experiment, using monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by 5 x 10-2 m towards the slits, the change in the fringe width is 3 x 10-5 m. If the distance between the two slits is 10-3 m, calculate the wavelength of the light used.


Answer the following question.
Write the conditions on path difference under which (i) constructive (ii) destructive interference occur in Young's double-slit experiment.


Wavefront is ______.


In Young’s double slit experiment, what is the effect on fringe pattern if the slits are brought closer to each other?


"If the slits in Young's double slit experiment are identical, then intensity at any point on the screen may vary between zero and four times to the intensity due to single slit".

Justify the above statement through a relevant mathematical expression.


The Young's double slit experiment is performed with blue and with green light of wavelengths 4360Å and 5460Å respectively. If x is the distance of 4th maxima from the central one, then:


In Young's double slit experiment shown in figure S1 and S2 are coherent sources and S is the screen having a hole at a point 1.0 mm away from the central line. White light (400 to 700 nm) is sent through the slits. Which wavelength passing through the hole has strong intensity?


Two slits, 4mm apart, are illuminated by light of wavelength 6000 A° what will be the fringe width on a screen placed 2 m from the slits?


How will the interference pattern in Young's double-slit experiment be affected if the phase difference between the light waves emanating from the two slits S1 and S2 changes from 0 to π and remains constant?


In Young's double-slit experiment, the separation between the two slits is d and the distance of the screen from the slits is 1000 d. If the first minima fall at a distance d from the central maximum, obtain the relation between d and λ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×