हिंदी

Abc is an Isosceles Triangle in Which Ab = Ac. Be and Cf Are Its Two Medians. Show that Be = Cf. - Mathematics

Advertisements
Advertisements

प्रश्न

ABC is an isosceles triangle in which AB = AC. BE and CF are its two medians. Show that BE = CF.

संक्षेप में उत्तर

उत्तर

In the triangle ABC it is given that 

AB = AC,  BE and  CFare medians.

We have to show that  BE CF

To show  BF = CF we will show that ΔBFC ≅ ΔBEC

In triangle ΔBFC and ΔBEC

As AB = AC, so 

 ∠FBC = ∠ECF            .........(1)

BC=BC (common sides)   ........(2)

Since,

 AB = AC

`1/2 AB  =1/2 AC `

As F and E are mid points of sides AB and AC respectively, so

BF = CE ..........(3)

From equation (1), (2)and (3)

ΔBFC and ΔBEC

Hence FC = BE Proved.

shaalaa.com
Criteria for Congruence of Triangles
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Congruent Triangles - Exercise 12.7 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
अध्याय 12 Congruent Triangles
Exercise 12.7 | Q 6 | पृष्ठ ८४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×