हिंदी

ABCD एक समांतर चतुर्भुज है। भुजा AB और AD पर क्रमशः बिंदु P और Q इस प्रकार लिये गये हैं कि एक समांतर चतुर्भुज PRQA बनता है। यदि ∠C = 45∘ है, तो ∠R ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ABCD एक समांतर चतुर्भुज है। भुजा AB और AD पर क्रमशः बिंदु P और Q इस प्रकार लिये गये हैं कि एक समांतर चतुर्भुज PRQA बनता है। यदि ∠C = 45है, तो ∠R ज्ञात कीजिए।

योग

उत्तर

माना ABCD एक समांतर चतुर्भुज है,


दिया गया है: ∠C = 45°

एक समांतर चतुर्भुज ABCD में,

∠A = ∠C   ...[समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]

इसी प्रकार, समान्तर चतुर्भुज PRQA में,

∠A = ∠R  ...[समांतर चतुर्भुज के सम्मुख कोण बराबर होते हैं।]

अतः, ∠R = 45°

shaalaa.com
चतुर्भुज के प्रकार - समांतर चतुर्भुज के गुणधर्म
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: चतुर्भुजों को समझना और प्रायोगिक ज्यामिति - प्रश्नावली [पृष्ठ १६१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 8
अध्याय 5 चतुर्भुजों को समझना और प्रायोगिक ज्यामिति
प्रश्नावली | Q 180. | पृष्ठ १६१

संबंधित प्रश्न

दर्शाइए कि एक वर्ग के विकर्ण बराबर होते हैं और परस्पर समकोण पर समद्विभाजित करते हैं।


समांतर चतुर्भुज ABCD का विकर्ण AC कोण A को समद्विभाजित करता है (देखिए आकृति में)। दर्शाइए कि

  1. यह ∠C को भी समद्विभाजित करता है।
  2. ABCD एक समचतुर्भुज है

 


क्या एक चतुर्भुज ABCD समांतर चतुर्भुज हो सकता है यदि ∠D +∠B = 180°?


बताइए कैसे एक वर्ग एक समांतर चतुर्भुज है।


चतुर्भुज ABCD में, ∠A + ∠D = 180° है। इस चतुर्भुज को कौन-सा विशेष नाम दिया जा सकता है?


ABCD एक समचतुर्भुज है, जिसमें D से AB पर शीर्षलंब AB को समद्विभाजित करता है। समचतुर्भुज के कोण ज्ञात कीजिए।


एक समांतर चतुर्भुज ABCD की सम्मुख भुजाओं AB और CD पर क्रमश : बिंदु P और Q इस प्रकार लिए गए हैं कि AP = CQ है। (आकृति)। दर्शाइए कि AC और PQ परस्पर समद्विभाजित करते हैं।


नीचे दी गयी आकृतियों में से कौन-सी आकृति निम्नलिखित गुणों को संतुष्ट करती है?

- सभी भुजाएँ बराबर हैं।

- सभी कोण समकोण हैं।

- सम्मुख भुजाएँ समांतर हैं।


यदि किसी समांतर चतुर्भुज के दो आसन्न कोण (5x − 5)और (10x + 35)हैं, तो इन कोणों का अनुपात होगा –


सभी आयत समांतर चतुर्भुज होते हैं।


समांतर चतुर्भुज LOST में, SN ⊥ OL और SM ⊥ LT है। ∠STM, ∠SON और ∠NSM ज्ञात कीजिए।


नीचे दिये गये एक जहाज कौँ आकृति में, ABDH और CEFG दो समांतर चतुर्भुज हैं। x का मान ज्ञात कीजिए।


किसी चतुर्भुज के दो कोणों में से प्रत्येक की माप 75है तथा अन्य दो कोण बराबर हैं। इन दोनों कोणों के माप क्या हैं? संभावित बनने वाली आकृतियों के नाम लिखिए।


एक समांतर चतुर्भुज HOME की रचना कीजिए, जिसमें HO = 6 cm, HE = 4 cm और OE = 3 cm है।


सिद्ध कीजिए कि एक समांतर चतुर्भुज के कोणों के समद्विभाजकों द्वारा बना चतुर्भुज एक आयत होता है।


किसी समांतर चतुर्भुज के दो संलग्न कोणों के मापों का अनुपात 1 : 2 हो तो उस समांतर चतुर्भुज के सभी कोणों के माप ज्ञात कीजिए।


आकृति में, बिंदु G, ΔDEF की माध्यिकाओं का संगामी बिंदु है। किरण DG पर बिंदु H इस प्रकार लें कि D-G-H तथा DG = GH, हो तो सिद्ध कीजिए कि `square` GEHF समांतर चतुर्भुज है।


संलग्न आकृति में समांतर चतुर्भुज `square` ABCD की भुजाओं पर P, Q, R, S इस प्रकार है कि, AP = BQ = CR = DS तो सिद्ध कीजिए कि `square` PQRS समांतर चतुर्भुज है।


समांतर चतुर्भुज की दो संलग्न भुजाओं का अनुपात 3 : 4  है। उसकी परिमिति 112 सेमी हो तो उसकी प्रत्येक भुजा की लंबाई ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×