हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Do You Expect the Gas in a Cooking Gas Cylinder to Obey the Ideal Gas Equation? - Physics

Advertisements
Advertisements

प्रश्न

Do you expect the gas in a cooking gas cylinder to obey the ideal gas equation?

टिप्पणी लिखिए

उत्तर

No, the gas won't obey ideal gas equation due to the following reasons:

1. In a cooking gas cylinder, the gas is kept at high pressure and at room temperature. Real gases behave ideally only at low pressure and high temperature.
2. Cooking gas is kept in liquid state inside the cylinder becaue liquid state does not obey the ideal gas equation. 

shaalaa.com
Interpretation of Temperature in Kinetic Theory
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Kinetic Theory of Gases - Short Answers [पृष्ठ ३२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
अध्याय 2 Kinetic Theory of Gases
Short Answers | Q 3 | पृष्ठ ३२

संबंधित प्रश्न

When you come out of a river after a dip, you feel cold. Explain.


The mean speed of the molecules of a hydrogen sample equals the mean speed of the molecules of a helium sample. Calculate the ratio of the temperature of the hydrogen sample to the temperature of the helium sample.

Use R = 8.314 JK-1 mol-1


0.040 g of He is kept in a closed container initially at 100.0°C. The container is now heated. Neglecting the expansion of the container, calculate the temperature at which the internal energy is increased by 12 J.

Use R = 8.3 J K-1 mol-1


An ideal gas is trapped between a mercury column and the closed-end of a narrow vertical tube of uniform base containing the column. The upper end of the tube is open to the atmosphere. The atmospheric pressure equals 76 cm of mercury. The lengths of the mercury column and the trapped air column are 20 cm and 43 cm respectively. What will be the length of the air column when the tube is tilted slowly in a vertical plane through an angle of 60°? Assume the temperature to remain constant.


Figure shows a cylindrical tube of radius 5 cm and length 20 cm. It is closed by a tight-fitting cork. The friction coefficient between the cork and the tube is 0.20. The tube contains an ideal gas at a pressure of 1 atm and a temperature of 300 K. The tube is slowly heated and it is found that the cork pops out when the temperature reaches 600 K. Let dN denote the magnitude of the normal contact force exerted by a small length dlof the cork along the periphery (see the figure). Assuming that the temperature of the gas is uniform at any instant, calculate `(dN)/(dt)`.


The condition of air in a closed room is described as follows. Temperature = 25°C, relative humidity = 60%, pressure = 104 kPa. If all the water vapour is removed from the room without changing the temperature, what will be the new pressure? The saturation vapour pressure at 25°C − 3.2 kPa.


Calculate the ratio of the mean square speeds of molecules of a gas at 30 K and 120 K.


Calculate the average molecular kinetic energy 

  1. per kmol 
  2. per kg 
  3. per molecule 

of oxygen at 127°C, given that the molecular weight of oxygen is 32, R is 8.31 J mol−1K1 and Avogadro’s number NA is 6.02 × 1023 molecules mol1.


Energy is emitted from a hole in an electric furnace at the rate of 20 W when the temperature of the furnace is 727°C. What is the area of the hole? (Take Stefan’s constant σ to be 5.7 × 10-8 Js-1 m-2K-4.)


Calculate the value of λmax for radiation from a body having a surface temperature of 3000 K. (b = 2.897 x 10-3 m K) 


The average translational kinetic energy of gas molecules depends on ____________.


The average translational kinetic energy of a molecule in a gas is 'E1'. The kinetic energy of the electron (e) accelerated from rest through p.d. 'V' volt is 'E2'. The temperature at which E1 = E2 is possible, is ______.


The molecules of a given mass of a gas have root mean square speeds of 100 ms−1 at 27°C and 1.00 atmospheric pressure. What will be the root mean square speeds of the molecules of the gas at 127°C and 2.0 atmospheric pressure?


Consider a rectangular block of wood moving with a velocity v0 in a gas at temperature T and mass density ρ. Assume the velocity is along x-axis and the area of cross-section of the block perpendicular to v0 is A. Show that the drag force on the block is `4ρAv_0 sqrt((KT)/m)`, where m is the mass of the gas molecule.


23Ne decays to 23Na by negative beta emission. Mass of 23Ne is 22.994465 amu mass of 23Na is 22.989768 amu. The maximum kinetic energy of emitted electrons neglecting the kinetic energy of recoiling product nucleus is ______ MeV.


The Q-value of a nuclear reaction and kinetic energy of the projectile particle, KP are related as ______.


For a particle moving in vertical circle, the total energy at different positions along the path ______.


Two gases A and B are at absolute temperatures of 360 K and 420 K, respectively. The ratio of the average kinetic energy of the molecules of gas B to that of gas A is ______.


Show that the average energy per molecule is proportional to the absolute temperature T of the gas. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×