Advertisements
Advertisements
प्रश्न
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
उत्तर
L.H.S. = `tan^-1 (2tan alpha/2 * tan (pi/4 - beta/2))/(1 - tan^2 alpha/2 tan^2 (pi/4 - beta/2))` ......`("क्योंकि" 2 tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (2tan alpha/2 (1 - tan beta/2)/(1 + tan beta/2))/(1 - tan^2 alpha/2 ((1 - tan beta/2)/(1 + tan beta/2))^2)`
= `tan^-1 (2tan alpha/2 (1 - tan^2 beta/2))/((1 + tan beta/2)^2 - tan^2 alpha/2 (1 - tan beta/2)^2)`
= `tan^-1 (2tan alpha/2 (1 - tan^2 beta/2))/((1 + tan^2 beta/2)(1 - tan^2 alpha/2) + 2 beta/2 (1 + tan^2 alpha/2))`
= `tan^-1 ((2tan alpha/2)/(1 + tan^2 alpha/2) - (1 - tan^2 beta/2)/(1 + tan^2 beta/2))/((1 - tan^2 alpha/2)/(1 + tan^2 alpha/2) + (2tan beta/2)/(1 + tan^ beta/2))`
= `tan^-1 ((sin alpha cos beta)/(cos alpha + sin beta))`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
sin-1 2x का प्रांत है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
sin (2 tan–1(0.75)) का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।