Advertisements
Advertisements
प्रश्न
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
व्याख्या:
हम जानते हैं कि सभी त्रिकोणमितीय फलन अपने व्युत्क्रम फलनों को प्राप्त करने के लिए अपने प्रांत पर प्रतिबंधित हैं।
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
sec-1 की मुख्य मान शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
sin (2 tan–1(0.75)) का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।