Advertisements
Advertisements
प्रश्न
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
उत्तर
L.H.S. `2tan^-1 (-3) = -2tan^-1 (3)`
= `- cos^-1 [(1- (3)^2)/(1 + (3)^2)]` ......`["क्योंकि" 2tan^-1x = cos^-1 ((1 - x^2)/(1 + x^2))]`
= `-cos^-1 ((1 - 9)/(1 + 9))`
= `- cos^-1 ((-8)/10)`
= `- cos^-1 ((-4)/5)`
= `- [pi - cos^-1 (4/5)]`
= `- pi + cos^-1 4/5`
= `- pi + tan^-1 (3/4)` ......`["क्योंकि" cos^-1 4/5 = tan^-1 3/4]`
= `- pi + pi/2 - cot^-1 (3/4)` ......`[tan^-1x = pi/2 - cot^-1x]`
= `(-pi)/2 - cot^-1 (3/4)`
= `(-pi)/2 - tan^-1 (4/3)` .......`["क्योंकि" tan^-1x = cot^-1 1/x]`
= `(-pi)/2 + tan^-1 (- 4/3)` R.H.S
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
sin (2 tan–1(0.75)) का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि cos–1x > sin–1x, हो तो
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।