Advertisements
Advertisements
प्रश्न
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
विकल्प
`pi/3`
`pi/2`
`(2pi)/3`
`(-2pi)/3`
उत्तर
सही उत्तर `pi/3` है।
व्याख्या:
क्योंकि `sin^-1 sin(- 600 xx pi/180) = sin^-1 sin((-10pi)/3)`
= `sin^-1 [- sin(4pi - (2pi)/3)]`
= `sin^-1 (sin (2pi)/3)`
= `sin^-1 (sin(pi - pi/3))`
= `sin^-1(sin pi/3)`
= `pi/3`.
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
sec-1 की मुख्य मान शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1x > sin–1x, हो तो
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।