Advertisements
Advertisements
प्रश्न
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
विकल्प
`pi/5`
`(2pi)/5`
`(3pi)/5`
π
उत्तर
सही उत्तर `underline(pi/5)` है।
व्याख्या:
हमारे पास है, tan–1x + tan–1y = `(4pi)/5`
⇒ `pi/2 - cot^-1x + pi/2 - cot^-1y = (4pi)/5`
⇒ `pi- (cot^-1x + cot^-1y) = (4pi)/5` .....`("क्योंकि" tan^-1x + cot^-1x = pi/2)`
⇒ `cot^-1x + cot^-1y = pi - (4pi)/5`
⇒ `cot^-1x + cot^-1y = pi/5`
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।