Advertisements
Advertisements
प्रश्न
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
विकल्प
0
`"a"/2`
a
`(2"a")/(1 - "a"^2)`
उत्तर
सही उत्तर `(2"a")/(1 - "a"^2)` है।
व्याख्या:
हमारे पास है, `sin^-1 (2"a")/(1 + "a"^2) + cos^-1 (1 - "a"^2)/(1 + "a"^2) = tan^-1 (2x)/(1 - x^2)`
⇒ `2tan^-1"a" + 2tan^-1"a" = 2tan^-1x` .....`[("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)),(2tan^-1x = sin^-1 (2x)/(1 + x^2)),(2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2))]`
⇒ `2tan^-1"a" = tan^-1x`
⇒ `tan^-1 (2"a")/(1 - "a"^2) = tan^-1x`
⇒ x = `(2"a")/(1 - "a"^2)`
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
sec-1 की मुख्य मान शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
cot (sin–1x) का मान है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`cos^-1 (cos (3pi)/2)` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।