हिंदी

यदि 3 tan-1x + cot-1x = , तो x बराबर होता है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।

विकल्प

  • 0

  • 1

  • -1

  • `1/2`

MCQ
योग

उत्तर

सही उत्तर 1 है।

व्याख्या:

दिया है कि 3 tan–1x + cot–1x = π

⇒ 2 tan–1x + tan–1x + cot–1x = π

⇒ `2 tan^-1x + pi/2` = π  ......`["क्योंकि" tan^-1x + cot^-1x = pi/2]`

⇒ `2tan^-1x = pi - pi/2`

⇒ `2tan^-1x = pi/2`

⇒ `2tan^-1x = pi/4`

⇒ `tan^-1x = tan^-1(1)`

⇒ x = 1

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 22 | पृष्ठ ३७

संबंधित प्रश्न

`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


tan (tan-1(-4)) को परिकलित कीजिए।


`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13


tan 1 तथा tan–11 कौन सा बड़ा है?


x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।


sec-1 की मुख्य मान शाखा है।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


y = cos–1(x2 – 4) का प्रांत है।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


सिद्ध कीजिए कि `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।


निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?


फलन cos-1(2x – 1) का प्रांत है।


यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।


व्यंजक `tan (1/2 cos^-1  2/sqrt(5))` का मान है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


`sin^-1 (sin  (3pi)/5)` का मान ______ है।


`tan^-1 sqrt(3)` का मुख्य मान ______ है।


`cos^-1 (cos  (14pi)/3)` का मान ______ है।


प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।


`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×