Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
उत्तर
दिया है
cot–17 + cot–18 + cot–118
= `tan^-1 1/7 + tan^-1 1/8 + tan^-1 1/18` ......(क्योंकि x > 0 के लिए `cos^-1x = tan^-1 1/x` )
= `tan^-1 ((1/7 + 1/8)/(1 - 1/7 xx 1/8)) + tan^-1 1/18` ......(क्योंकि x . y = `1/7 1/8 < 1`)
= `tan^-1 3/11 + tan^-1 1/18`
= `tan^-1((3/11 + 1/18)/(1 - 3/11 xx 1/18))` .....(क्योंकि xy < 1)
= `tan^-1 65/195`
= `tan^-1 1/3`
= cot–13
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
फलन y = sin–1 (- x2) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।