Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
उत्तर
L.H.S. `sin^-1 8/17 + sin^-1 3/5`
`sin^-1x +sin^-1y sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)]` का प्रयोग करना
`sin^-1 8/17 + sin^-1 3/5 = sin^-1[8/17* sqrt(1 - (3/5)^2) + 3/5 * sqrt(1 (8/1)^2)]`
= `sin^-1[8/17 * sqrt(1 9/25) + 3/5* sqrt(1 - 64/289)]`
= `sin^-1 [8/17 * sqrt(16/25) + 3/5* sqrt(225/289)]`
= `sin^-1 [8/17 * 4/5 +3/5 * 15/17]`
= `sin-1 [32/85 + 45/85]`
=`sin^-1 77/85` R.H.S.
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
फलन y = sin–1 (- x2) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।