हिंदी

यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`

योग

उत्तर

यदि a1, a2, a3, ..., an समांतर श्रेणी के पद हैं।

∴ d = a2 – a1

= a3 – a2

= a4 – a3 ....

∴ `tan[tan^-1 (("a"_2 - "a"_1)/(1 + "a"_1"a"_2)) + tan^-1 (("a"_3 - "a"_2)/(1 + "a"_2 "a"_3)) + tan^-1 (("a"_4 - "a"_3)/(1 + "a"_3 "a"_4)) + ...... + tan^-1  (("a"_"n" - "a"_("n" - 1))/(1 + "a"_("n" - 1) * "a"_"n"))]``

⇒ tan [(tan–1 a2 – tan–1 a1) + (tan–1 a3 – tan–1 a2) + (tan–1 a4 – tan–1 a3) + ... + (tan–1 an – tan–1 an – 1)]  .....`["क्योंकि" tan^-1  (x - y)/(1 + xy) = tan^-1x - tan^-1y]`

⇒ tan [(tan–1 a2 – tan–1 a1 + tan–1 a3 – tan–1 a2 + tan–1 a4 – tan–1 a3 + ... + tan–1 an – tan–1 an – 1]

⇒ tan [tan–1 an – tan–1 a1]

⇒ `tan[tan^-1 (("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n"))]`

⇒ `("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n")`  .....[∵ tan (tan–1x) = x]

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 19 | पृष्ठ ३६

संबंधित प्रश्न

x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।


`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


`cos[sin^-1  1/4 + sec^-1  4/3]` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


sec-1 की मुख्य मान शाखा है।


`sin^-1 (cos((43pi)/5))` का मान है।


फलन y = sin–1 (- x2) का प्रांत है।


y = cos–1(x2 – 4) का प्रांत है।


यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब


tan2 (sec–12) + cot2 (cosec–13) का मान है।


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।


`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।


यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।


`sin^-1 (sin  (3pi)/5)` का मान ______ है।


`tan^-1 sqrt(3)` का मुख्य मान ______ है।


यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ . 


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×