Advertisements
Advertisements
प्रश्न
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
उत्तर
यदि a1, a2, a3, ..., an समांतर श्रेणी के पद हैं।
∴ d = a2 – a1
= a3 – a2
= a4 – a3 ....
∴ `tan[tan^-1 (("a"_2 - "a"_1)/(1 + "a"_1"a"_2)) + tan^-1 (("a"_3 - "a"_2)/(1 + "a"_2 "a"_3)) + tan^-1 (("a"_4 - "a"_3)/(1 + "a"_3 "a"_4)) + ...... + tan^-1 (("a"_"n" - "a"_("n" - 1))/(1 + "a"_("n" - 1) * "a"_"n"))]``
⇒ tan [(tan–1 a2 – tan–1 a1) + (tan–1 a3 – tan–1 a2) + (tan–1 a4 – tan–1 a3) + ... + (tan–1 an – tan–1 an – 1)] .....`["क्योंकि" tan^-1 (x - y)/(1 + xy) = tan^-1x - tan^-1y]`
⇒ tan [(tan–1 a2 – tan–1 a1 + tan–1 a3 – tan–1 a2 + tan–1 a4 – tan–1 a3 + ... + tan–1 an – tan–1 an – 1]
⇒ tan [tan–1 an – tan–1 a1]
⇒ `tan[tan^-1 (("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n"))]`
⇒ `("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n")` .....[∵ tan (tan–1x) = x]
APPEARS IN
संबंधित प्रश्न
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
y = cos–1(x2 – 4) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`sin^-1 [cos((33pi)/5)]` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।