Advertisements
Advertisements
प्रश्न
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
उत्तर
हम जानते हैं कि `(5pi)/6 ∉ (- pi/2, pi/2)` तथा `(13pi)/6 ∉ [0, pi]`
∴ `tan^-1 (tan (5pi)/6) + cos^1(cos (13pi)/6)`
= `tan^-1 [tan (pi - pi/6)] + cos^-1[cos(2pi + pi/6)]`
= `tan^-1[tan(- pi/6)] + cos^-1(cos pi/6)`
= `tan^-1 (tan pi/6)+ cos^-1 (cos pi/6)`
= `- tan^-1 (tan pi/6) + cos^-1(cos pi/6)` .....[∵ tan–1(– x) = – tan– 1x]
= `- pi/6 + pi/6`
= 0
अत: `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` = 0
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
sec-1 की मुख्य मान शाखा है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
sin (2 sin–1 (.6)) का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
फलन cos-1(2x – 1) का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।