मराठी

समीकरण tan-1x(x+1)+sin-1x2+x+1=π2 के वास्तविक हल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।

बेरीज

उत्तर

हमारे पास `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`

⇒ `tan^-1 sqrt(x(x +1)) = pi/2 - sin^-1 sqrt(x^2 + x + 1)`

= `cos^-1 sqrt(x^2 + x + 1)`

= `tan^-1  sqrt(-x^2 - x)/sqrt(x^2 +x + 1)`  ....(आकृति से)

⇒ `sqrt(x(x + 1)) = sqrt(-x^2 - x)/sqrt(x^2 + x + 1)`

⇒ `x^2 + x` = 0

⇒ x = 0, –1

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 7 | पृष्ठ ३५

संबंधित प्रश्‍न

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


tan (tan-1(-4)) को परिकलित कीजिए।


`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13


tan 1 तथा tan–11 कौन सा बड़ा है?


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


sec-1 की मुख्य मान शाखा है।


sin-1 2x का प्रांत है।


`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।


यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।


यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।


प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×