Advertisements
Advertisements
प्रश्न
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
उत्तर
2 tan–1(cos θ) = tan–1(2 cosec θ)
⇒ `tan^-1 ((2costheta)/(1 - cos^2 theta)) = tan^-1(2 "cosec" theta)` ......`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
⇒ `(2costheta)/(1 - cos^2theta)` = 2 cosec θ
⇒ `(2costheta)/(sin^2theta) = 2/sintheta`
⇒ cos θ sin θ = sin2θ
⇒ cos θ sin θ – sin2θ = 0
⇒ sin θ(cos θ – sin θ) = 0
⇒ sin θ = 0 or cos θ – sin θ = 0
⇒ sin θ = 0 or 1 – tan θ = 0
⇒ θ = 0 or tan θ = 1
⇒ θ = 0° or θ = `pi/4`
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
cot (sin–1x) का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।