Advertisements
Advertisements
प्रश्न
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
पर्याय
`19/8`
`8/19`
`19/12`
`3/4`
उत्तर
सही उत्तर `19/8` है।
व्याख्या:
`tan(cos^-1 3/5 + tan^-1 1/4) = tan(tan^-1 4/3 + tan^-1 1/4)`
= `tan^-1 ((4/3 + 1/4)/(1 - 4/3 xx 1/4))`
= `tan^1 (19/8)`
= `19/8`.
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
`sin^-1 (cos((43pi)/5))` का मान है।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cot[cos^-1 (7/25)]` का मान है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।