Advertisements
Advertisements
प्रश्न
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
उत्तर
`tan^-1 sqrt(3)` का मुख्य मान pi/3 है।
व्याख्या:
`tan^-1 sqrt(3) = tan^-1(tan pi/3)`
= `pi/3 ∈ ((-pi)/2, pi/2)`
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
tan (tan-1(-4)) को परिकलित कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।