Advertisements
Advertisements
प्रश्न
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
उत्तर
L.H.S. `2tan^-1 (-3) = -2tan^-1 (3)`
= `- cos^-1 [(1- (3)^2)/(1 + (3)^2)]` ......`["क्योंकि" 2tan^-1x = cos^-1 ((1 - x^2)/(1 + x^2))]`
= `-cos^-1 ((1 - 9)/(1 + 9))`
= `- cos^-1 ((-8)/10)`
= `- cos^-1 ((-4)/5)`
= `- [pi - cos^-1 (4/5)]`
= `- pi + cos^-1 4/5`
= `- pi + tan^-1 (3/4)` ......`["क्योंकि" cos^-1 4/5 = tan^-1 3/4]`
= `- pi + pi/2 - cot^-1 (3/4)` ......`[tan^-1x = pi/2 - cot^-1x]`
= `(-pi)/2 - cot^-1 (3/4)`
= `(-pi)/2 - tan^-1 (4/3)` .......`["क्योंकि" tan^-1x = cot^-1 1/x]`
= `(-pi)/2 + tan^-1 (- 4/3)` R.H.S
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
tan (tan-1(-4)) को परिकलित कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
sin (2 tan–1(0.75)) का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।