Advertisements
Advertisements
प्रश्न
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
व्याख्या:
हम जानते हैं कि सबसे छोटा N मान, या तो धनात्मक या ऋणात्मक, θ को फलन का प्रमुख मान कहा जाता है।
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
`sin^-1 (cos((43pi)/5))` का मान है।
व्यंजक cos–1[cos (– 680°)] का मान है।
cot (sin–1x) का मान है।
sin-1 2x का प्रांत है।
फलन y = sin–1 (- x2) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1x > sin–1x, हो तो
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।