Advertisements
Advertisements
प्रश्न
cot (sin–1x) का मान है।
पर्याय
`sqrt(1 + x^2)/x`
`x/sqrt(1 + x^2)`
`1/x`
`sqrt(1 - x^2)/x`
उत्तर
सही उत्तर `sqrt(1 - x^2)/x` है।
व्याख्या:
मान लीजिए sin–1x = θ, तब sin θ = x
⇒ cosec θ = `1/x`
⇒ cosec2θ = `1/x^2`
⇒ 1 + cot2θ = `1/x^2`
⇒ cot θ = `sqrt(1 - x^2)/x`.
APPEARS IN
संबंधित प्रश्न
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।