Advertisements
Advertisements
प्रश्न
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
उत्तर
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में π – cot–1x है।
व्याख्या:
स्पष्ट रूप से, –x ∈ R सभी के लिए x ∈ R
मान लीजिए cot–1(–x) = θ, θ ∈ (0, π) ......(i)
⇒ –x = cot θ
⇒ x = – cot θ
⇒ x = cot (π – θ)
⇒ cot–1x = π – θ .......[∵ x ∈ R और π – θ ∈ (0, π) सभी θ ∈ (0, π) के लिए]
⇒ θ = π – cot–1x .....(ii)
(i) और (ii) से, हम प्राप्त करते हैं।
cot–1(–x) = π – cot–1x
APPEARS IN
संबंधित प्रश्न
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
`sin^-1 (cos((43pi)/5))` का मान है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
`sin^-1 [cos((33pi)/5)]` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।