Advertisements
Advertisements
प्रश्न
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
उत्तर
L.H.S. `cos(2tan^-1 1/7)`
= `cos[cos^-1 (1 - 1/49)/(1 + 1/49)]` .....`["क्योंकि" 2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2)]`
= `cos[cos^-1 48/50]`
= `cos[cos^-1 24/25]`
= `24/25`
R.H.S `sin[4 tan^-1 1/3]`
= `sin[2tan^-1 ((2 xx 1/3)/(1 - 1/9))]` .....`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `sin[2tan^-1 ((2/3)/(8/9))]`
= `sin[2tan^-1 3/4]`
= `sin[sin^-1 (2 xx 3/4)/(1 + 9/16)]` ......`["क्योंकि" 2tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= `sin[sin^-1 24/25]`
⇒ `24/25`
L.H.S. = R.H.S.
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।