मराठी

व्यंजक tan(12cos-1 25) का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

व्यंजक `tan (1/2 cos^-1  2/sqrt(5))` का मान है।

पर्याय

  • `2 + sqrt(5)`

  • `sqrt(5) - 2`

  • `(sqrt(5) + 2)/2`

  • `5 + sqrt(2)`

MCQ

उत्तर

सही उत्तर `underline(sqrt(5) - 2)` है।

व्याख्या:

हमारे पास,, `tan (1/2 cos^-1  2/sqrt(5))` 

माना θ = `1/2 cos^-1  2/sqrt(5)`

⇒ 2θ = `cos^-1  2/sqrt(5)`

⇒ cos 2θ = `2/sqrt(5)`

⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)`  ......`["क्योंकि" cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`

⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`

⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`

⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`

⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))` 

⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`

⇒ tan2θ = `+- (sqrt(5) - 2)`

⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "आवश्यक नहीं है"]`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 33 | पृष्ठ ३८

संबंधित प्रश्‍न

`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


व्यंजक cos–1[cos (– 680°)] का मान है।


sin-1 2x का प्रांत है।


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


फलन y = sin–1 (- x2) का प्रांत है।


y = cos–1(x2 – 4) का प्रांत है।


sin (2 sin–1 (.6)) का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


`tan^-1 (tan  (2pi)/3)` का मान निकालिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


सिद्ध कीजिए कि `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।


`cos^-1 (cos  (3pi)/2)` का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।


`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।


`sin^-1 (sin  (3pi)/5)` का मान ______ है।


यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।


व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।


यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ . 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×