Advertisements
Advertisements
प्रश्न
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
पर्याय
`2 + sqrt(5)`
`sqrt(5) - 2`
`(sqrt(5) + 2)/2`
`5 + sqrt(2)`
उत्तर
सही उत्तर `underline(sqrt(5) - 2)` है।
व्याख्या:
हमारे पास,, `tan (1/2 cos^-1 2/sqrt(5))`
माना θ = `1/2 cos^-1 2/sqrt(5)`
⇒ 2θ = `cos^-1 2/sqrt(5)`
⇒ cos 2θ = `2/sqrt(5)`
⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)` ......`["क्योंकि" cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`
⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`
⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`
⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`
⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))`
⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`
⇒ tan2θ = `+- (sqrt(5) - 2)`
⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "आवश्यक नहीं है"]`
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
sin-1 2x का प्रांत है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .