Advertisements
Advertisements
प्रश्न
फलन y = sin–1 (- x2) का प्रांत है।
पर्याय
[0, 1]
(0, 1)
[–1, 1]
Φ
उत्तर
सही उत्तर [–1, 1] है।
व्याख्या:
क्योंकि y = sin–1(– x2)
⇒ siny = – x2
अर्थात – 1 ≤ – x2 ≤ 1 ......(क्योंकि – 1 ≤ sin y ≤ 1)
⇒ 1 ≥ x2 ≥ – 1
⇒ 0 ≤ x2 ≤ 1
⇒ |x| ≤ 1 या – 1 ≤ x ≤ 1
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
cot (sin–1x) का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
`sin^-1 [cos((33pi)/5)]` का मान है।
sin (2 tan–1(0.75)) का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि cos–1x > sin–1x, हो तो
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।