Advertisements
Advertisements
प्रश्न
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
उत्तर
मान लीजिए `cot^-1 ((-5)/12)` = y.
तब cot y = `(-5)/12`
अब `sin[2cot^-1 ((-5)/12)]` = sin 2y
= 2sin y cos y
= `2(12/13)((-5)/13)` ......`["क्योंकि" cot y < 0, "so" y ∈(pi/2, pi)]`
= `(-120)/169`
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
cot (sin–1x) का मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
sin (2 sin–1 (.6)) का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।