Advertisements
Advertisements
प्रश्न
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
पर्याय
0
`"a"/2`
a
`(2"a")/(1 - "a"^2)`
उत्तर
सही उत्तर `(2"a")/(1 - "a"^2)` है।
व्याख्या:
हमारे पास है, `sin^-1 (2"a")/(1 + "a"^2) + cos^-1 (1 - "a"^2)/(1 + "a"^2) = tan^-1 (2x)/(1 - x^2)`
⇒ `2tan^-1"a" + 2tan^-1"a" = 2tan^-1x` .....`[("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)),(2tan^-1x = sin^-1 (2x)/(1 + x^2)),(2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2))]`
⇒ `2tan^-1"a" = tan^-1x`
⇒ `tan^-1 (2"a")/(1 - "a"^2) = tan^-1x`
⇒ x = `(2"a")/(1 - "a"^2)`
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
sec-1 की मुख्य मान शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
sin-1 2x का प्रांत है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
`cot[cos^-1 (7/25)]` का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।