Advertisements
Advertisements
प्रश्न
sin-1 2x का प्रांत है।
पर्याय
[0, 1]
[– 1, 1]
`[-1/2, 1/2]`
[–2, 2]
उत्तर
सही उत्तर `[-1/2, 1/2]` है।
व्याख्या:
मान लीजिए sin–12x = θ या 2x = sin θ.
अब – 1 ≤ sin θ ≤ 1
अर्थात – 1 ≤ 2x ≤ 1
जिससे `-1/2 ≤ x ≤ 1/2` प्राप्त होता है।
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
`sin^-1 (cos((43pi)/5))` का मान है।
cot (sin–1x) का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।