Advertisements
Advertisements
प्रश्न
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
पर्याय
0
1
2
अनंत
उत्तर
सही उत्तर अनंत है।
व्याख्या:
हमारे पास `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)`
⇒ `sqrt(2 cos^2x) = sqrt(2)x` .....`["क्योंकि" cos^-1 (cos x) = x]`
⇒ `sqrt(2) cos x = sqrt(2)x`
⇒ cos x = x
जो x के किसी भी मान के लिए संतुष्ट नहीं है।
APPEARS IN
संबंधित प्रश्न
tan (tan-1(-4)) को परिकलित कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
sec-1 की मुख्य मान शाखा है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।