मराठी

4tan-1 15-tan-1 1239 का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।

बेरीज

उत्तर

`4tan^-1  1/5 - tan^-1  1/239`

= `2(2tan^-1  1/5) - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239`  .....`("क्योंकि"  2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `2tan^-1  (2/5)/(1 - (1/5)^2) - tan^-1  1/239` .....`("क्योंकि"  2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `2tan^-1  (2/5)/(24/25) - tan^-1  1/239`

= `2tan^-1  5/12 - tan^-1  1/239`

= `tan^-1  (2*5/12)/(1 - (5/12)^2) - tan^-1  1/239`  ......`("क्योंकि"  2tan^-1x = tan^-1  (2x)/(1 - x^2))`

= `tan^-1  (144 xx 5)/(119 xx 6) - tan^-1  1/239`

= `tan^-1  120/119 - tan^-1  1/239`

= `tan^-1  (120/119 - 1/239)/(1 + 120/119 * 1/239)`  ......`("क्योंकि" tan^-1x - tan^-1y = tan^-1  (x - y)/(1 + xy))`

= `tan^-1  (120 xx 239 - 119)/(119 xx 239 + 120)`

= `tan^-1  (28680 - 119)/(28441 + 120)`

= `tan^-1  28561/28561`

= `tan^-1 1 = pi/4`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 17 | पृष्ठ ३७

संबंधित प्रश्‍न

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13


tan 1 तथा tan–11 कौन सा बड़ा है?


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


`sin^-1 (cos((43pi)/5))` का मान है।


sin-1 2x का प्रांत है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


y = cos–1(x2 – 4) का प्रांत है।


sin (2 sin–1 (.6)) का मान है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


दर्शाइए कि `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।


निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?


`sin^-1 [cos((33pi)/5)]` का मान है।


f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।


यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।


`cos^-1 (cos  (14pi)/3)` का मान ______ है।


प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×