Advertisements
Advertisements
प्रश्न
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
उत्तर
`4tan^-1 1/5 - tan^-1 1/239`
= `2(2tan^-1 1/5) - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `2tan^-1 (2/5)/(1 - (1/5)^2) - tan^-1 1/239` .....`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `2tan^-1 (2/5)/(24/25) - tan^-1 1/239`
= `2tan^-1 5/12 - tan^-1 1/239`
= `tan^-1 (2*5/12)/(1 - (5/12)^2) - tan^-1 1/239` ......`("क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (144 xx 5)/(119 xx 6) - tan^-1 1/239`
= `tan^-1 120/119 - tan^-1 1/239`
= `tan^-1 (120/119 - 1/239)/(1 + 120/119 * 1/239)` ......`("क्योंकि" tan^-1x - tan^-1y = tan^-1 (x - y)/(1 + xy))`
= `tan^-1 (120 xx 239 - 119)/(119 xx 239 + 120)`
= `tan^-1 (28680 - 119)/(28441 + 120)`
= `tan^-1 28561/28561`
= `tan^-1 1 = pi/4`
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
`sin^-1 (cos((43pi)/5))` का मान है।
sin-1 2x का प्रांत है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।