Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
उत्तर
L.H.S. = `tan^-1 1/4 + tan^-1 2/9`
= `tan^-1 (1/4 + 2/9)/(1 - 1/4 * 2/9)`
= `tan^-1 (9 + 8)/(36 - 2)`
= `tan^-1 1/2`
= `sin^-1 1/sqrt(5)`.
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
फलन cos-1(2x – 1) का प्रांत है।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
sin (2 tan–1(0.75)) का मान है।
व्यंजक `tan (1/2 cos^-1 2/sqrt(5))` का मान है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।