Advertisements
Advertisements
प्रश्न
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
उत्तर
L.H.S. = `tan^-1 (2tan alpha/2 * tan (pi/4 - beta/2))/(1 - tan^2 alpha/2 tan^2 (pi/4 - beta/2))` ......`("क्योंकि" 2 tan^-1x = tan^-1 (2x)/(1 - x^2))`
= `tan^-1 (2tan alpha/2 (1 - tan beta/2)/(1 + tan beta/2))/(1 - tan^2 alpha/2 ((1 - tan beta/2)/(1 + tan beta/2))^2)`
= `tan^-1 (2tan alpha/2 (1 - tan^2 beta/2))/((1 + tan beta/2)^2 - tan^2 alpha/2 (1 - tan beta/2)^2)`
= `tan^-1 (2tan alpha/2 (1 - tan^2 beta/2))/((1 + tan^2 beta/2)(1 - tan^2 alpha/2) + 2 beta/2 (1 + tan^2 alpha/2))`
= `tan^-1 ((2tan alpha/2)/(1 + tan^2 alpha/2) - (1 - tan^2 beta/2)/(1 + tan^2 beta/2))/((1 - tan^2 alpha/2)/(1 + tan^2 alpha/2) + (2tan beta/2)/(1 + tan^ beta/2))`
= `tan^-1 ((sin alpha cos beta)/(cos alpha + sin beta))`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
sin (2 tan–1(0.75)) का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।