मराठी

X के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।

बेरीज

उत्तर

दिए गए समीकरण से हमें प्राप्त होता है की

 (sin–1x + sin–1 (1 – x)) = sin (cos–1x)

⇒ sin (sin–1x) cos (sin–1(1 – x)) + cos (sin–1x) sin (sin–1(1 – x) ) = sin (cos–1x)

⇒ `xsqrt(1 - (1 - x)^2) + (1 - x) sqrt(1 - x^2) = sqrt(1 - x^2)`

⇒ `xsqrt(2x - x^2) + sqrt(1 - x^2) (1 - x - 1)` = 0

⇒ `x(sqrt(2x - x^2) - sqrt(1 - x^2))` = 0

⇒ x = 0 या `2x - x^2 = 1 - x^2`

⇒ x = 0 या x =`1/2`.

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ २६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 18 | पृष्ठ २६

संबंधित प्रश्‍न

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।


`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।


`cos[sin^-1  1/4 + sec^-1  4/3]` का मान ज्ञात कीजिए।


`sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।


sec-1 की मुख्य मान शाखा है।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


`sin^-1 (cos((43pi)/5))` का मान है।


`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।


y = cos–1(x2 – 4) का प्रांत है।


sin (2 sin–1 (.6)) का मान है।


`tan(cos^-1  3/5 + tan^-1  1/4)` का मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7


दर्शाइए कि `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


फलन cos-1(2x – 1) का प्रांत है।


`cos^-1 (cos  (3pi)/2)` का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×