Advertisements
Advertisements
प्रश्न
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
उत्तर
दिए गए समीकरण से हमें प्राप्त होता है की
(sin–1x + sin–1 (1 – x)) = sin (cos–1x)
⇒ sin (sin–1x) cos (sin–1(1 – x)) + cos (sin–1x) sin (sin–1(1 – x) ) = sin (cos–1x)
⇒ `xsqrt(1 - (1 - x)^2) + (1 - x) sqrt(1 - x^2) = sqrt(1 - x^2)`
⇒ `xsqrt(2x - x^2) + sqrt(1 - x^2) (1 - x - 1)` = 0
⇒ `x(sqrt(2x - x^2) - sqrt(1 - x^2))` = 0
⇒ x = 0 या `2x - x^2 = 1 - x^2`
⇒ x = 0 या x =`1/2`.
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
`sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।
sec-1 की मुख्य मान शाखा है।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
y = cos–1(x2 – 4) का प्रांत है।
sin (2 sin–1 (.6)) का मान है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।