मराठी

Sin (2 sin–1 (.6)) का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

sin (2 sin–1 (.6)) का मान है।

पर्याय

  • .48

  • .96

  • 1.2

  • sin 1.2

MCQ

उत्तर

सही उत्तर .96 है।

व्याख्या:

यदि sin–1 (.6) = θ

तब sin θ = .6

अब sin (2θ) = 2

sinθ cosθ = 2 (.6) (.8)

= .96

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ ३२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 35 | पृष्ठ ३२

संबंधित प्रश्‍न

`tan^-1 (tan  (9pi)/8)` का मान ज्ञात कीजिए।


सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।


tan 1 तथा tan–11 कौन सा बड़ा है?


व्यंजक cos–1[cos (– 680°)] का मान है।


sin-1 2x का प्रांत है।


`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7


समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.


दर्शाइए कि `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।


सिद्ध कीजिए कि `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


निम्न में से कौन सा cos-1x की मुख्य शाखा है?


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


यदि cos–1x > sin–1x, हो तो


`cos^-1 (cos  (14pi)/3)` का मान ______ है।


सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।


प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।


प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×