English

Sin (2 sin–1 (.6)) का मान है। - Mathematics (गणित)

Advertisements
Advertisements

Question

sin (2 sin–1 (.6)) का मान है।

Options

  • .48

  • .96

  • 1.2

  • sin 1.2

MCQ

Solution

सही उत्तर .96 है।

व्याख्या:

यदि sin–1 (.6) = θ

तब sin θ = .6

अब sin (2θ) = 2

sinθ cosθ = 2 (.6) (.8)

= .96

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [Page 32]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 35 | Page 32

RELATED QUESTIONS

tan (tan-1(-4)) को परिकलित कीजिए।


tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।


सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


sec-1 की मुख्य मान शाखा है।


`sin^-1 (cos((43pi)/5))` का मान है।


cot (sin–1x) का मान है।


यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


फलन y = sin–1 (- x2) का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


`tan^-1 (tan  (2pi)/3)` का मान निकालिए।


दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।


sin (2 tan–1(0.75)) का मान है।


यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।


व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।


n का वह न्यूनतम मान जिसके लिए `tan^-1  "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×