Advertisements
Advertisements
Question
sin (2 sin–1 (.6)) का मान है।
Options
.48
.96
1.2
sin 1.2
Solution
सही उत्तर .96 है।
व्याख्या:
यदि sin–1 (.6) = θ
तब sin θ = .6
अब sin (2θ) = 2
sinθ cosθ = 2 (.6) (.8)
= .96
APPEARS IN
RELATED QUESTIONS
tan (tan-1(-4)) को परिकलित कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
सिद्ध कीजिए कि `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
sec-1 की मुख्य मान शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
cot (sin–1x) का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
sin (2 tan–1(0.75)) का मान है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।