English

फलन y = sin–1 (- x2) का प्रांत है। - Mathematics (गणित)

Advertisements
Advertisements

Question

फलन y = sin–1 (- x2) का प्रांत है।

Options

  • [0, 1]

  • (0, 1)

  • [–1, 1]

  • Φ

MCQ

Solution

सही उत्तर [–1, 1] है।

व्याख्या:

क्योंकि y = sin–1(– x2)

⇒ siny = – x2

अर्थात – 1 ≤ – x2 ≤ 1 ......(क्योंकि – 1 ≤ sin y ≤ 1)

⇒ 1 ≥ x2 ≥ – 1

⇒ 0 ≤ x2 ≤ 1

⇒ |x| ≤ 1 या – 1 ≤ x ≤ 1 

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [Page 32]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 32 | Page 32

RELATED QUESTIONS

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


tan (tan-1(-4)) को परिकलित कीजिए।


सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।


tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।


`cos[sin^-1  1/4 + sec^-1  4/3]` का मान ज्ञात कीजिए।


x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।


sec-1 की मुख्य मान शाखा है।


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


व्यंजक cos–1[cos (– 680°)] का मान है।


sin-1 2x का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


tan2 (sec–12) + cot2 (cosec–13) का मान है।


`tan^-1 (tan  (2pi)/3)` का मान निकालिए।


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


`sin^-1 [cos((33pi)/5)]` का मान है।


फलन cos-1(2x – 1) का प्रांत है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


`cos^-1 (cos  (14pi)/3)` का मान ______ है।


सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


n का वह न्यूनतम मान जिसके लिए `tan^-1  "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×