Advertisements
Advertisements
Question
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
Solution
`cos[sin^-1 1/4 + sec^-1 4/3] = cos[sin^-1 1/4 + cos^-1 3/4]`
= `cos(sin^-1 1/4) cos(cos^-1 3/4) - sin(sin^-1 1/4) sin(cos^-1 3/4)`
= `3/4 sqrt(1 - (1/4)^2) - 1/4 sqrt(1 - (3/4)^2`
= `3/4 sqrt(15)/4 - 1/4 sqrt(7)/4`
= `(3sqrt(15) - sqrt(7))/6`
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
समीकरण `cos(tan^-1x) = sin(cot^-1 3/4)` को हल कीजिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
n का वह न्यूनतम मान जिसके लिए `tan^-1 "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।