Advertisements
Advertisements
प्रश्न
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
उत्तर
`cos[sin^-1 1/4 + sec^-1 4/3] = cos[sin^-1 1/4 + cos^-1 3/4]`
= `cos(sin^-1 1/4) cos(cos^-1 3/4) - sin(sin^-1 1/4) sin(cos^-1 3/4)`
= `3/4 sqrt(1 - (1/4)^2) - 1/4 sqrt(1 - (3/4)^2`
= `3/4 sqrt(15)/4 - 1/4 sqrt(7)/4`
= `(3sqrt(15) - sqrt(7))/6`
APPEARS IN
संबंधित प्रश्न
`tan^-1sin((-pi)/2)` को परिकलित कीजिए ।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
sec-1 की मुख्य मान शाखा है।
`sin^-1 (cos((43pi)/5))` का मान है।
cot (sin–1x) का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
सिद्ध कीजिए कि `sin^-1 8/17 + sin^-1 3/5 = sin^-1 77/85`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`cos^-1 (cos (14pi)/3)` का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।