हिंदी

Tan2 (sec–12) + cot2 (cosec–13) का मान है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

tan2 (sec–12) + cot2 (cosec–13) का मान है।

विकल्प

  • 5

  • 11

  • 13

  • 15

MCQ

उत्तर

सही उत्तर 11 है।

व्याख्या:

tan2 (sec–12) + cot2 (cosec–13) = sec2 (sec–12) – 1 + cosec2 (cosec–13) – 1

= 22 × 1 + 32 – 2

= 11.

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ ३४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 41 | पृष्ठ ३४

संबंधित प्रश्न

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।


`sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।


`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


sec-1 की मुख्य मान शाखा है।


`sin^-1 (cos((43pi)/5))` का मान है।


व्यंजक cos–1[cos (– 680°)] का मान है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।


यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।


`tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))` का मान निकालिए।


समीकरण  `cos(tan^-1x) = sin(cot^-1  3/4)` को हल कीजिए।


`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?


sin (2 tan–1(0.75)) का मान है।


व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।


यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।


`cot[cos^-1 (7/25)]` का मान है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


समीकरण  `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।


cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।


यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ . 


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×