Advertisements
Advertisements
प्रश्न
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
उत्तर
cos (sin–1x + cos–1x), |x| ≤ 1 का मान 0 है।
व्याख्या:
cos (sin–1x + cos–1x) = `cos pi/2`
= 0 ......`("क्योंकि" sin^-1x + cos^-1x = pi/2)`
APPEARS IN
संबंधित प्रश्न
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
व्यंजक cos–1[cos (– 680°)] का मान है।
sin-1 2x का प्रांत है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।
`cot[cos^-1 (7/25)]` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
`sin^-1 (sin (3pi)/5)` का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।