हिंदी

F(x) = sin-1x-1 द्वारा परिभाषित फलन का प्रांत है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।

विकल्प

  • [1, 2]

  • [–1, 1]

  • [0, 1]

  • इनमें से कोई नहीं

MCQ

उत्तर

सही उत्तर [1, 2] है।

व्याख्या:

माना f(x) = `sin^-1 sqrt(x - 1)`

∵ `sqrt(x - 1) ≥ 0` and `-1 ≤ sqrt(x - 1) ≤ 1`

⇒ 0 ≤ x – 1 ≤ 1

⇒ 1 ≤ x ≤ 2

⇒ `x ∈ [1, 2]`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - प्रश्नावली [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
प्रश्नावली | Q 25 | पृष्ठ ३७

संबंधित प्रश्न

`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।


`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।


समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


cot (sin–1x) का मान है।


`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


यदि θ = sin–1 (sin (– 600°), तब θ का मान है।


y = cos–1(x2 – 4) का प्रांत है।


f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


समीकरण tan–1x – cot–1x = `(1/sqrt(3))`


यदि 2 tan-1(cos ) = tan-1(2 cosec ), तो दिखाइए कि θ = `π /4`.


दर्शाइए कि `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


सिद्ध कीजिए कि `sin^-1  8/17 + sin^-1  3/5 = sin^-1  77/85`


दर्शाइए कि `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


`cos^-1 (cos  (3pi)/2)` का मान है।


`cot[cos^-1 (7/25)]` का मान है।


अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।


`sec^-1 (1/2)` के मानों का समुच्चय ______ है।


cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।


त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।


प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।


n का वह न्यूनतम मान जिसके लिए `tan^-1  "n"/pi > pi/4`, n ∈ N, के लिए सत्य हो, वह 5 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×