Advertisements
Advertisements
प्रश्न
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
उत्तर
दिए गए समीकरण से
`sin^-1 6x = - pi/2 - sin^-1 6sqrt(3)x` के रूप में लिख सकते हैं।
⇒ `sin(sin^-1 6x) = sin(- pi/2 - sin^-1 6sqrt(3)x)`
⇒ 6x = `- cos(sin^-1 6sqrt(3)x)`
⇒ 6x = `-sqrt(1 - 108x^2)`.
वर्ग करने पर प्राप्त होता है
`36x^2= 1 - 108x^2`
⇒ 144x2 = 1
⇒ x = `+- 1/12`
ध्यान दीजिए कि केवल x = `- 1/12` ही समीकरण का हल है क्योंकि x = `1/12` इसे संतुष्ट नहीं करता है।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
व्यंजक cos–1[cos (– 680°)] का मान है।
sin-1 2x का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
व्यंजक sin [cot–1 (cos (tan–11))] का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
सिद्ध कीजिए कि `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
फलन cos-1(2x – 1) का प्रांत है।
`cos^-1 (cos (3pi)/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि `cos(tan^-1x + cot^-1 sqrt(3))` = 0, तब x का मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।
θ कोण का न्यूनतम संख्यात्मक मान, चाहे धनात्मक हो या ऋणात्मक, को त्रिकोणमितीय फलन का मुख्य मान कहते हैं।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।