Advertisements
Advertisements
प्रश्न
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
उत्तर
`sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
⇒ `sin[tan^-1 ((2 xx 1/3)/(1 - (1/3)^2))] + cos[cos^-1 1/sqrt(1 + (2sqrt(2))^2)]` ......`["क्योंकि" tan^-1x = cos^-1 (1/sqrt(1 + x^2))]`
⇒ `sin[tan^-1 ((2/3)/(1 - 1/9))] + cos[cos^-1 (1/3)]`
⇒ `sin[tan^-1 (3/4)] + 1/3`
⇒ `sin[sin^-1 (3/5)] + 1/3`
⇒ `3/5 + 1/3`
⇒ `14/15` ......`["क्योंकि" tan^-1x = sin^-1 x/sqrt(1 + x^2)]`
इसलिए, `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2)) = 14/15`
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि tan(cot-1x) = cot(tan-1x). कारण सहित बताइए कि क्या यह x के सभी मानों के लिए सत्य है।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
(sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।
यदि θ = sin–1 (sin (– 600°), तब θ का मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
यदि sin–1x + sin–1y = `pi/2` तब cos–1x + cos–1y का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
tan2 (sec–12) + cot2 (cosec–13) का मान है।
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
f(x) = `sin^-1 sqrt(x- 1)` द्वारा परिभाषित फलन का प्रांत है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
cos (sin–1x + cos–1x), |x| ≤ 1 का मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।