Advertisements
Advertisements
प्रश्न
समीकरण `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2` के वास्तविक हल ज्ञात कीजिए।
उत्तर
हमारे पास `tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
⇒ `tan^-1 sqrt(x(x +1)) = pi/2 - sin^-1 sqrt(x^2 + x + 1)`
= `cos^-1 sqrt(x^2 + x + 1)`
= `tan^-1 sqrt(-x^2 - x)/sqrt(x^2 +x + 1)` ....(आकृति से)
⇒ `sqrt(x(x + 1)) = sqrt(-x^2 - x)/sqrt(x^2 + x + 1)`
⇒ `x^2 + x` = 0
⇒ x = 0, –1
APPEARS IN
संबंधित प्रश्न
tan (tan-1(-4)) को परिकलित कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cot–17 + cot–18 + cot–118 = cot–13
tan 1 तथा tan–11 कौन सा बड़ा है?
दर्शाइए कि
`2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
sec-1 की मुख्य मान शाखा है।
cot (sin–1x) का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
sin-1 2x का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
व्यंजक `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
sin (2 tan–1(0.75)) का मान है।
यदि cos–1x > sin–1x, हो तो
`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।