Advertisements
Advertisements
प्रश्न
cot (sin–1x) का मान है।
विकल्प
`sqrt(1 + x^2)/x`
`x/sqrt(1 + x^2)`
`1/x`
`sqrt(1 - x^2)/x`
उत्तर
सही उत्तर `sqrt(1 - x^2)/x` है।
व्याख्या:
मान लीजिए sin–1x = θ, तब sin θ = x
⇒ cosec θ = `1/x`
⇒ cosec2θ = `1/x^2`
⇒ 1 + cot2θ = `1/x^2`
⇒ cot θ = `sqrt(1 - x^2)/x`.
APPEARS IN
संबंधित प्रश्न
`cos^-1(cos (13pi)/6)` का मान ज्ञात कीजिए।
`tan^-1 (tan (9pi)/8)` का मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
tan (cos–1x) का मान ज्ञात कीजिए और फिर `tan(cos^-1 8/17)` परिकलित कीजिए।
`sin[2cot^-1 ((-5)/12)]` का मान ज्ञात कीजिए।
व्यंजक cos–1[cos (– 680°)] का मान है।
यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।
sin-1 2x का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
समीकरण tan–1x – cot–1x = `(1/sqrt(3))`
tan2 (sec–12) + cot2 (cosec–13) का मान है।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
दर्शाइए कि `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
सिद्ध कीजिए कि `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
`sin^-1 [cos((33pi)/5)]` का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।
`cot[cos^-1 (7/25)]` का मान है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
प्रतिलोम त्रिकोणमितीय फलनों का आलेख उनके संगत त्रिकोणमितीय फलन के आलेख में x तथा y अक्ष का परस्पर विनिमय करके प्राप्त किया जा सकता है।
`Sin^-1 [cos (sin^-1 1/2)] "का मुख्य मान"` `pi/3` है।