Advertisements
Advertisements
प्रश्न
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy ______ है।
उत्तर
परिणाम `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` तभी सत्य है जब xy – 1 है।
व्याख्या:
दिया गया परिणाम सत्य है जब xy> - 1।
APPEARS IN
संबंधित प्रश्न
`tan^-1 sqrt(3) - sec^-1(-2)` का मान ज्ञात कीजिए।
`sin^-1 [cos(sin^-1 sqrt(3)/2)]` का मान ज्ञात कीजिए।
`sec(tan^-1 y/2)` का मान ज्ञात कीजिए।
`cos[sin^-1 1/4 + sec^-1 4/3]` का मान ज्ञात कीजिए।
निम्न में से कौन सा tan-1 की मुख्य मान शाखा है?
`sin^-1 (cos((43pi)/5))` का मान है।
`sin^-1 ((-sqrt(3))/2)` का मुख्य मान है।
फलन y = sin–1 (- x2) का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
f(x) = sin–1x + cosx द्वारा परिभाषित फलन का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
यदि α ≤ 2 sin–1x + cos–1x ≤ β, तब
`tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` का मान निकालिए।
सिद्ध कीजिए कि `cot(pi/4 - 2cot^-1 3)` = 7
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
`4tan^-1 1/5 - tan^-1 1/239` का मान ज्ञात कीजिए।
दर्शाइए कि `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।
यदि `cos(sin^-1 2/5 + cos^-1x)` = 0 , तो x का मान है।
`cos^-1 (cos (3pi)/2)` का मान है।
अब |x| ≤ 1, तब `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` बराबर है।
यदि cos–1x > sin–1x, हो तो
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।
त्रिकोणमितीय फलनों के प्रांतों का उनकी किसी भी शाखा ( आवश्यक नहीं कि मुख्य शाखा हो) में प्रतिबंधित किया जा सकता है ताकि उनका प्रतिलोम फलन प्राप्त हो सके।