Advertisements
Advertisements
प्रश्न
दर्शाइए कि `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
उत्तर
L.H.S. `cos(2tan^-1 1/7)`
= `cos[cos^-1 (1 - 1/49)/(1 + 1/49)]` .....`["क्योंकि" 2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2)]`
= `cos[cos^-1 48/50]`
= `cos[cos^-1 24/25]`
= `24/25`
R.H.S `sin[4 tan^-1 1/3]`
= `sin[2tan^-1 ((2 xx 1/3)/(1 - 1/9))]` .....`["क्योंकि" 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
= `sin[2tan^-1 ((2/3)/(8/9))]`
= `sin[2tan^-1 3/4]`
= `sin[sin^-1 (2 xx 3/4)/(1 + 9/16)]` ......`["क्योंकि" 2tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= `sin[sin^-1 24/25]`
⇒ `24/25`
L.H.S. = R.H.S.
इसलिए साबित हुआ।
APPEARS IN
संबंधित प्रश्न
x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।
tan (tan-1(-4)) को परिकलित कीजिए।
tan 1 तथा tan–11 कौन सा बड़ा है?
`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।
समीकरण `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2` को हल कीजिए।
मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।
cot (sin–1x) का मान है।
sin-1 2x का प्रांत है।
y = cos–1(x2 – 4) का प्रांत है।
`tan(cos^-1 3/5 + tan^-1 1/4)` का मान है।
`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।
`tan^-1 (tan (2pi)/3)` का मान निकालिए।
दर्शाइए कि `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।
निम्न में से कौन सा cos-1x की मुख्य शाखा है?
निम्नलिखित में से कौन सा cosec-1x की मूख्य शाखा है?
यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।
यदि cos–1α + cos–1β + cos–1γ = 3π, तब α(β + γ) + β(γ + α) + γ(α + β) बराबर है।
समीकरण `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` के वास्तविक हलों की संख्या है।
`sec^-1 (1/2)` के मानों का समुच्चय ______ है।
`tan^-1 sqrt(3)` का मुख्य मान ______ है।
व्यंजक `tan((sin^-1x + cos^-1x)/2)`, जहाँ x = `sqrt(3)/2` है, का मान ______ है।
यदि x सभी मानों के लिए y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` तब ______ < y < ______ .
सभी x ∈ R के लिए cot-1(-x) का मान cot-1x के पद में ______ है।
प्रत्येक त्रिकोणमितीय फलन का उनके संगत प्रांतों में प्रतिलोम फलन का अस्तित्व होता है।