हिंदी

Tan-1(1-x1+x)=12tan-1x,x>0 को x के लिए हल कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0` को x के लिए हल कीजिए।

योग

उत्तर

दिए गए समीकरण से, 

`2tan^-1 ((1 - x)/(1 + x)) = tan^-1x`

⇒ `2[tan^-1 1 - tan^-1x] = tan^-1x`

⇒ `2(pi/4) = 3tan^-1x`

⇒ `pi/6 = tan^-1x`

⇒ x = `1/sqrt(3)`

shaalaa.com
प्रतिलोम त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: प्रतिलोम तिरिकोंमितिया फलन - हल किए हुए उदाहरण [पृष्ठ २६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 2 प्रतिलोम तिरिकोंमितिया फलन
हल किए हुए उदाहरण | Q 17 | पृष्ठ २६

संबंधित प्रश्न

x = `sqrt(3)/2` के लिए cos-1x का मूख्य मान ज्ञात कीजिए।


`sin(2tan^-1  2/3) + cos(tan^-1 sqrt(3))` का मान ज्ञात कीजिए।


x के वे मान ज्ञात कीजिए जो समीकरण sin–1x + sin–1(1 – x) = cos–1x को संतुष्ट करते हैं।


दर्शाइए कि

`2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


मुख्य मान शाखा के अतिरिक्त cos-1 की एक अन्य शाखा है।


यदि किसी x ∈ R के लिए `tan^-1x = pi/10` है तो cot–1x का मान है।


 (sin–1x)2 + (cos–1x)2 का क्रमश:अधिकतम तथा न्यूनतम मान है।


व्यंजक sin [cot–1 (cos (tan–11))] का मान है।


tan2 (sec–12) + cot2 (cosec–13) का मान है।


`tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)` का मान निकालिए।


`cos[cos^-1 ((-sqrt(3))/2) + pi/6]` का मान ज्ञात कीजिए।


व्यंजक `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))` का मान निकालिए।


`cos^-1 (3/5 cosx + 4/5 sin x)`, जहाँ x ∈ `[(-3pi)/4, pi/4]`, को सरलतम रूप में लिखिए।


`4tan^-1  1/5 - tan^-1  1/239` का मान ज्ञात कीजिए।


दर्शाइए कि `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` तथा इसका भी औचित्य बताइए कि दूसरा मान `(4 + sqrt(7))/3` को क्यों नहीं लिया गया है।


यदि a1, a2, a3,...,an एक समांतर श्रेढ़ी में है जिसका सार्व अंतर (common difference) d है तो निम्नलिखित व्यंजक का मान निकालिए।

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


यदि 3 tan-1x + cot-1x = , तो x बराबर होता है।


`sin^-1 [cos((33pi)/5)]` का मान है।


`cos^-1 (cos  (3pi)/2)` का मान है।


व्यंजक `2 sec^-1 2 + sin^-1 (1/2)` का मान है।


यदि tan–1x + tan–1y = `(4pi)/5`, तो cot–1x + cot–1y बराबर है।


यदि `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`, जहाँ a, x ∈ ] 0, 1, तब x का मान बराबर है।


यदि cos–1x > sin–1x, हो तो


`cos^-1 (- 1/2)` की मूख्य शाखा ______ है।


व्यंजक (cos-1X)2 का मान Sec2x के बराबर है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×